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Midline shift (MLS), the amount of displacement of the brain’s midline from its normal 

symmetric position due to illness or injury, is an important index for clinicians to assess 

the severity of traumatic brain injury (TBI).  

In this dissertation, an automated computer-aided midline shift estimation system is 

proposed. First, a CT slice selection algorithm (SSA) is designed to automatically select a 

subset of appropriate CT slices from a large number of raw images for MLS detection. 

Next, ideal midline detection is implemented based on skull bone anatomical features and 

global rotation assumptions. For the actual midline detection algorithm, a window 
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selection algorithm (WSA) is applied first to confine the region of interest, then the 

variational level set method is used to segment the image and extract the ventricle 

contours. With a ventricle identification algorithm (VIA), the position of actual midline is 

detected based on the identified right and left lateral ventricle contours. Finally, the brain 

midline shift is calculated  using the positions of detected ideal midline and actual 

midline. 

One of the important applications of midline shift in clinical medical decision making is 

to estimate the intracranial pressure (ICP). ICP monitoring is a standard procedure in the 

care of severe traumatic brain injury (TBI) patients. An automated ICP level prediction 

model based on machine learning method is proposed in this work. Multiple features, 

including midline shift, intracranial air cavities, ventricle size, texture patterns, and blood 

amount, are used in the ICP level prediction. Finally, the results are evaluated to assess 

the effectiveness of the proposed method in ICP level prediction. 
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Novelty and Contribution 

Medical data acquired practically all clinical settings contains massive amount of 

information but not all of this information may be relevant to a specific medical decision 

making process. Often simple visual inspection and traditional computational methods 

are incapable of extracting the hidden information behind the preliminary data, which 

may be instrumental in generating recommendations and predictions for both diagnosis 

and treatment planning. Midline shift (MLS) estimation is a vital step in clinical decision 

making for patients with traumatic brain injury (TBI). Computer-aided midline shift 

detection is crucial to assist physicians make an accurate diagnosis on the severity of TBI 

within a reasonable time. 

In this work, an automated MLS estimation system with high accuracy is proposed to 

quantitatively analyze the severity of the brain injury. Using machine learning, ICP is 

predicted as the reference of physician decision making. This machine learning model is 

trained and tested using a nested crossing validation process.  Novelties provided by this 

research include: 

 

 Automated CT slice selection 

Numerous raw CT slices can be acquired from one scan but not all slices are suitable for 

the midline shift detection. In clinical setting, physician manually chooses a few slices for 

diagnosis. In this work, a CT slice selection algorithm (SSA) is designed to perform the 

automated slice selection process in order to obtain the most suitable slices for MLS 

estimation. During the slice selection process, the proposed SSA algorithm automatically 

considers multiple anatomic information of the human brain, including the expected skull 
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appearance, the proper representation of intracranial region, and the topology of the 

ventricle system. With the significant reduction in the number of candidate slices 

considered for the MLS detection, the computation time needed to process the following 

steps is dramatically reduced.  

 

 Ideal midline detection system 

Fully considering the symmetry of the skull and anatomical features, the proposed ideal 

midline detection algorithm is designed to accurately identify the ideal midline on the 

candidate CT slices selected by the SSA algorithm. It contains two continuous processes, 

both of which have the assistance of the global rotation. The application of global 

rotation ensures accurate ideal midline detection. Exhaustive symmetric position search 

algorithm is used to detect the approximate ideal midline based on the row symmetry cost. 

Subsequently, a multiple segmentation methods based on the brain anatomical features 

are utilized to refine the ideal midline. Finally the brain direction is calibrated by making 

the detected ideal midline in vertical direction.  

 

 Dynamic window selection 

In order to further reduce the computation time involved in searching for the actual 

midline, a dynamic window selection method is designed by confining the region of 

interest in this work. Window selection algorithm (WSA) is proposed to fulfill this task 

on the slices selected by the SSA algorithm. The WSA algorithm not only narrows down 

the search for the most suitable CT slice but also confines the window in which the 

ventricles reside. The selected window is used as the initialization of the level set 
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segmentation. This process by itself can be used in other brain image processing 

applications as well as other similar applications.  

 

 Segmentation based on the variational level set model 

Level set method is a popular deformation model in medical image processing. 

Variational level set segmentation applied in this work, is a modified level set method 

that is designed to resolve the re-initialization limitations of the original method and 

reduce its sensitivity to intensity inhomogeneity of the image. In our system, the 

variational level set segmentation model combined with the ventricle identification 

process successfully extracts the contours of ventricles. Actual midline is estimated by 

the positions of the ventricle contours. 

Compared with other segmentation methods that have been used in the MLS detection, 

such as the Gaussian Mixture Model (GMM), the variational level set model has proved 

to successfully reduce the time consumption and effectively enhance the accuracy of the 

segmentation.  

 

 MLS application: ICP prediction 

One of the important applications of midline shift in medical diagnosis is intracranial 

pressure (ICP) prediction. Elevated ICP may results in secondary complications or death 

via swelling and deformation of the brain tissues.  

In this work, an ICP level prediction model is designed, by applying machine learning on 

multiple features extracted from brain CT images, including the estimated midline shift. 

Other features extracted from CT are included in the prediction process include 
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intracranial air cavities, ventricle size, texture patterns and blood amount. These features 

are added to other information such as demographics as important features and are used 

in the prediction process. The obtained results show that the proposed model can 

potentially be applied towards developing a clinically-useful pre-screening system for 

detection of elevated ICP.  

 

 



www.manaraa.com

 

 19 

Chapter 1: Introduction 

1.1 Motivation and background 

1.1.1 Brain midline shift and its medical applications 

In the United States, nearly 1.7 million cases of traumatic brain injury (TBI) are recorded 

annually, among which 1.365 million, i.e. nearly 80% of all cases are treated and released 

from an emergency department, 275,000 are hospitalized, and 52,000 die [1]. It has to be 

added that 26,000 lose their lives in the first two hours after injury. The majority of TBI 

survivors may suffer from significant physical health problems including permanent 

disability, which may seriously affect their lives as well as the lives of their families in 

both emotional and financial aspects [2, 3, 4]. TBI is considered as one of the leading 

causes of the death in children and young adults [5, 6]. An accurate medical diagnosis at 

the time of injury or soon after may dramatically alleviate the complications, avoid 

lifelong disability, or even save life [7, 8]. Thus, fast and accurate diagnosis is vital in 

TBI care.  

One of the most serious problems associated with TBI is the elevation of intracranial 

pressure (ICP), which could lead to the deformation of brain tissue and ventricular 

structure thereby further complicating the injury and causing secondary complications [5]. 

Although invasive direct monitoring of ICP through cranial trepanation is an option to 

detect ICP level and its potential elevation, this invasive procedure could sometimes 

cause further complications [9]. Therefore, a non-invasive and cost-effective pre-
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screening method to estimate ICP levels and potentially eliminate the need for invasive 

monitoring at least in a portion of patients would be highly desirable.  

A CT scan is usually taken soon after TBI in emergency medical practice. The tissue shift 

and deformation shown in the scan is a vital reference for physician in medical diagnosis. 

One of the potential deformations, the brain midline shift (MLS), is an important index 

for clinicians to assess the severity of TBI and is known to be highly correlated with the 

ICP levels [9]. MLS greater than 5 mm can lead to sufalcine herniation and possibly 

death [10]. 

 

 

Figure 1.1 Brain midline shift. Blue dash line represents the ideal midline and red 

solid line represents the shifted actual midline [11]. 

 

The Midline Shift (MLS) is the degree of shift in the brain, measured roughly at about the 

center of the brain, which is caused by the injury or illness. As shown in Figure 1.1, the 

detection of MLS often involves the following two main steps: estimation of ideal 

midline (symmetric midline as if the injury or illness had not occurred) and detection of 
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actual midline (shifted midline after injury or illness). Since the ideal midline is used as 

reference in the MLS detection, the ideal midline estimation significantly affects the 

accuracy of the MLS detection. The actual midline usually is detected using the anatomic 

information of the brain after the injury or illness. This anatomical information includes 

the position of the ventricle system, which is the key clinical factor in identifying where 

the line resides. 

 

1.1.2 Computed Tomography (CT) technique  

 

 

Figure 1.2 CT scanner (Toshiba’s High-Powered CT scanner) [12] 

 

Computed Tomography (CT) is used in the estimation of MLS in this work, while other 

image modalities such as MRI could have been applied in this study as well. However, 

the CT is more practical system for initial TBI assessment due to its fast speed, lower 
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cost and high quality, and as a result, in practically all emergency medicine settings CT is 

the standard imaging technology used for assessment of TBI, at least for the initial 

assessment [13]. In addition, modern CT scanner can acquire high quality non-contrast 

brain CT scan in less than 10 seconds. CT scan is considered as a golden standard in 

assessment for acute hemorrhage and very desirable at documenting mass effect and 

herniation as well as effective at visualizing skull fracture [10]. 

As one of the important medical imaging method, CT utilizes tomography methods [14] 

and can provide high resolution images showing serious lesions such as intracranial 

hematoma, hemorrhage, and brain contusions [15]. From the emergence of CT scanning 

in medicine in 1970s, CT has provided the possibility of quick diagnosis of ongoing 

intracranial damage and the possible neurosurgical intervention afterward, which is the 

key to overcome life threatening events in head injured patients [16-19].  

The size and number of pixels in CT image depend on the setting of the CT scanner. 

Smaller size of pixels combined with each other builds up higher resolution image.  

In CT image, the dark regions represent the tissue with a low absorption of X-ray, such as 

air or ventricular system in brain, while the bright regions represent the area with high 

absorption of X-ray, such as bone or blood. CT value measured in Hounsfield Unit (Hu) 

is used to describe the density of pixels in CT image. Different tissues in human body 

have different densities with the CT values range from -1000 Hu to 3000 Hu except for 

very dense materials such as dental fillings or metal implants [20]. For example, the CT 

value is -1000 Hu for air, -400 to -600 Hu for lung tissue, -60 to 100 Hu for fat tissue, 0 

Hu for water, 40 to 80 Hu for soft tissue, and 400 to 1000 Hu for bone. Figure 1.2 is an 

example of CT imaging devices. Figure 1.3 shows a sample of the brain CT image.  
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Figure 1.3 A sample of brain CT image 

 

1.1.3 Ventricle system in the human brain 

The ventricles of the brain form a connected network of cavities filled with cerebrospinal 

fluid (CSF) and located within the brain parenchyma (Figure 1.4). The ventricular system 

is composed of two lateral ventricles (the left and right lateral ventricles), the third 

ventricle, the cerebral aqueduct, and the fourth ventricle [21]. The lateral ventricles are in 

the cerebral hemispheres. The lateral ventricles communicate with the third ventricle 

through the interventricular foramen. The third ventricle is a median cavity in the brain, 

bounded by the thalamus and hypothalamus on either side. In front, the third ventricle 

communicates with the lateral ventricles, and in back it communicates with the aqueduct 

of the midbrain. The fourth ventricle is the most inferior of the four ventricles of the brain 



www.manaraa.com

 

 24 

[22]. Since the left and right lateral ventricles can be easily displayed in the CT images, 

in this work, these two ventricles are used in the actual midline detection. In the normal 

brain of a young adult, the right and left lateral ventricles are symmetrically located in the 

two hemispheres. As a result of an illness or injury, the shifted ventricles position could 

provide a reference for the actual midline estimation. However, it is worth noticing that 

due to the complexity of the brain CT, the full size and position of the ventricles may not 

be fully reflected in some CT slices correctly. Therefore, the MLS diagnosis based on the 

position of ventricles must be implemented on a suitable slice, which contains the clearest 

and the most representative ventricle information. 

 

 

Figure 1.4 The ventricle system in the brain [23] 
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1.1.4 Automated computer aided clinical decision support systems  

Automated computer aided clinical decision support systems have been proven as vital 

supportive tools for physicians in clinical practice. In clinic setting, physicians usually 

have to process lots of information in a short period of time and give accurate diagnosis 

so as to provide the best care to patients. In environments such as battlefield hospitals or 

emergency rooms, the number of patients may abruptly increase and might end up over 

burdening the physicians. Also, in the case of critical injuries where time is of essence, it 

is vital that physicians make accurate but swift diagnostic decisions so as to be able to 

provide required treatment(s) in time in order to save the patient’s life. The large amount 

of patient’s data presented to physicians, including CT scans, demographics and patient 

history, might require a lot of time to analyze. Under such critical situations, the 

automated computer-aided clinical decision support system could provide reliable 

recommendations for the physicians while effectively accelerate the decision making.  

On the other hand, there is tremendous variety as well as complexity in the clinical data 

used for trauma care, it is challenging to avoid mis-diagnosis even for experienced 

trauma care professionals [24-27]. Other reasons for mis-diagnosis include unstable 

patients, incomplete medical records or complicating diseases [28-30]. Insufficient data 

analysis, limited time, and interference caused by fatigue all possibly lead to human error 

in the physician’s mis-diagnosis. An automated computer-assisted decision support 

system could greatly help process all available patient information in a short time and 

give recommendations to physicians. 

http://dict.cn/complicating%20disease


www.manaraa.com

 

 26 

Automated midline shift detection on CT image is very challenging due to the injury 

severity, variation in the size, shape and location of ventricles from patient to patient, 

presence of image noise. There is a need to design an automated midline shift detection 

system on CT images towards providing recommendations to physicians in medical 

decision support in clinical practice. 

 

1.1.5 Medical image segmentation  

Image segmentation plays a significant role in the computer-aided medical images 

processing [31]. In computer vision, image segmentation is the process of partitioning a 

digital image into multiple regions (sets of pixels). The purpose of segmentation is to 

represent an image using a more simple and meaningful expression for analysis [32]. 

Image segmentation is typically used to locate objects and boundaries in image. 

Specifically, image segmentation is the process to assign a label on every pixel in an 

image such that pixels with the same label are connected, and the resulting collection of 

pixels shares certain visual characteristics. Pixels in one region in segmentation are 

similar with respect to some features, such as color, intensity, or texture. Adjacent 

regions may be significantly different with respect to the same characteristics [33].  

Image segmentation algorithms have been applied to many biomedical applications such 

as quantification of tissue volumes [34], diagnosis  [35], localization of pathology [36], 

study of anatomical structure [37], treatment planning [38], partial volume correction of 

functional imaging data [39], and computer integrated surgery [40, 41]. However, there is 

no gold-standard segmentation method which can satisfy the requirements of all medical 

imaging application. Methods aimed at particular applications can usually achieve better 

http://en.wikipedia.org/wiki/Set_(mathematics)
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performance by taking into account prior knowledge on a gray level appearance or shape 

characteristics. Segmentation techniques often have to be combined with domain 

knowledge in order to effectively solve the specific problems [42].  

Image segmentation methods can be divided into three categories depending on the 

classification scheme, imaging modality, and specific application [42]:  

 Manual, semiautomatic, and automatic 

 Pixel or region based (including threshold method, region growing method, edge-

based method), knowledge model based (including expectation maximization 

algorithm, Bayesian prior model),  and deformable model based (including snakes, 

level set method) 

 Classical (including threshold method, edge-based method, region growing method), 

fuzzy clustering, statistical atlas mapped, and neural network techniques. 

Several medical image segmentation methods have attracted a great deal of attention in 

the last 2-3 decades. Here, we introduce several popular segmentation methods as follows. 

 

1.1.5.1 Threshold method  

Threshold based image segmentation method is usually as effective and popular method 

in image processing [43]. The setting of the threshold value is the key in this method. 

Using a fixed global threshold value for all examination is easier but may not able to 

provide consistent results for all cases. The popular Otsu method is a good example of 

utilizing global threshold method but fails for images containing non-uniform intensity 

changes.  Using the local threshold values the inhomogeneous intensity can be factored in 

although the multi-threshold selection complicates the problem [43]. Although threshold 
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method is intuitive and fast, it is usually challenging, if not practical, to accurately 

segment regions of interest from complicated medical images such as the brain CT scans.  

 

1.1.5.2 Region growing  

Region growing is a technique for extracting a connected region of an image based on a 

predefined criterion [44, 45]. In this method, a see point or a set of seed points is selected 

initially and all the pixels around it are added based on some predefined criteria to the 

region represented by the seed [46, 47]. The seed initialization step, which is required for 

every region of interest, can be achieved by manual, semi automated, or fully automated 

processes. However, this method suffers from the hard definition of an appropriate seed 

setting. The accuracy of this method depends heavily on the chosen criteria. Region 

growing methods are simple techniques that provide relatively good results especially 

with smaller region segmentation in applications where the above-mentioned challenges 

can be properly addressed.   

 

1.1.5.3 Clustering   

Clustering methods partition data given image into a certain number of groups/clusters. 

These techniques are unsupervised techniques that iteratively alternate between 

segmenting the image and characterizing the properties of each cluster.  Some clustering 

method, such K-mean segmentation [48], fuzzy-c-mean algorithm [49], and the 

expectation-maximization algorithm [49, 50] have become more popular in the medical 

image applications. The choice of similarity measure is the crucial aspect of the 
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clustering methods. However, it is difficult to directly incorporate spatial modeling and 

avoid effect of some inherent noise in the segmentation. 

 

1.1.5.4 Classifiers  

Classification methods usually apply a set of features or parameters, which should be 

relevant to the object being separated and use a classifier via a supervised learning task   

The training set is used by the classification programs to learn how to classify objects. In 

the training phase, the training set is used to determine how the parameters should be 

weighted and combined in order to separate the various regions/classes/objects. In the test 

phase, the parameters and their weights, determined during the training phase, are applied 

to determine their class and therefore segment the image [51]. The current popular 

classification methods used for segmentation include Gaussian Mixture Model (GMM) 

[52-54], Nearest-neighbor classifier [55], k-nearest-neighbor classifier [56], and 

maximum likelihood [57].  

 

1.1.5.5 Deformable models 

In the recent decades of years, deformable models have been widely used in medical 

image segmentation. Deformable models are curves or surfaces, defined within an image 

domain which can be moved by both internal forces and external forces. The internal 

forces defined within the curve or surface are aimed at keeping the model smooth during 

deformation, while the external forces computed from the image data are defined to move 

the model toward an object boundary or other desired features within an image. 
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Deformable models offer robustness to both image noise and boundary gaps. They also 

combine boundary elements into a coherent and consistent status. Such a boundary 

description can then be readily used by subsequent applications. In addition, since 

deformable models are implemented on the continuum, the resulting boundary 

representation can achieve subpixel accuracy, which is a highly desirable property for 

medical imaging applications [58]. The deformable methods can be categorized into three 

groups: parametric deformable models, geometric deformable models, and extensions of 

deformable models. The level set method used in this work is one popular method 

belonging to the geometric deformable method category. 

 

1.2 System validation methods 

Generally, the evaluation methods of image segmentation can be partitioned based on the 

methodologies used at five levels [59-62], as shown in Figure 1.5. The two main 

categories are subjective vs. objective evaluation, where subjective evaluation is made 

only by expert/evaluator examiners who investigate the segmentation results visually. 

The objective evaluation is further divided into system-level evaluation in which the 

segmentation considers the entire system/framework/application, and the direct 

evaluation in which the focus is only on the segmentation method itself. The direct 

objective evaluation contains the analytical methods and empirical methods which are 

either unsupervised or supervised depending on whether or not the method requires a 

ground-truth reference image. While every evaluation method has its own merit, the 

combination of the system-level evaluation and supervised evaluation forms the most 

popular approach in image processing systems [63, 64].  
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Figure 1.5 Hierarchy of segmentation evaluation methods. The highlighted 

evaluation methods will be applied on our proposed system. 

 

Supervised evaluation methods (also called relative evaluation methods) [65-67] compare 

the segmentation obtained by a specific method against a manual segmentation operated 

by experts. The manual segmentation is considered as a ground-truth or gold standard in 

practice [60, 68]. The quantitative assessment of segmentation describes the degree of 

similarity between computer segmented images and reference images.  

The supervised evaluation usually uses the discrepancy methods to objectively assess the 

quality of segmentation [59]. There are a variety of discrepancy measures. Some are 

based on the number of misclassified pixels to the reference image [69-73] while others 

are defined using the difference in the feature values of the segmented and reference 
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images [74-78]. In addition, some variational discrepancy methods are also applied in the 

segmentation evaluation [79-81].  One suitable discrepancy measure belonging to the first 

group is mis-segmentation measure, which is defined based on the mis-segmented areas, 

and has proved to be a successful measure in evaluating segmentation methods [82].  

In this work, the system-level evaluation and supervised evaluation methods using 

multiple measures is applied to assess the efficiency and accuracy of the ventricle 

segmentation and the midline shift detection. In addition, the decision making / prediction 

methods, such ICP prediction methods, are also qualitatively assessed using the same 

approach.  

 

1.3 Proposed method 

 

Figure 1.6  Schematic diagram of the overall system 
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The overall system is a four-step process that estimates the brain midline shift as shown 

in schematic diagram of Figure 1.6. As the first step, a CT Slice Selection Algorithm is 

used, wherein the algorithm finds a suitable subset of slices from a large number of raw 

CT images. In the second step, the ideal midline of the brain is accurately and effectively 

detected by considering both anatomical features and the overlapping information among 

the CT slices. In this step, the algorithm not only recognizes the ideal midline, which can 

be used as a reference for the comparison in the final MLS calculation, but also 

centralizes the CT images. In the third step, the actual midline detection begins with our 

novel Window Selection Algorithm designed to narrow the focus only to the regions of 

interest and subsequently uses level set segmentation to extract the ventricle contours. 

Using the position of the detected left and right lateral ventricles, the actual midline is 

identified on the brain CT image. At last, the brain midline shift is estimated by the 

distance between the detected ideal midline and actual midline.  

The rest of the dissertation is organized as follows. In Chapters 2 to 4, we illustrate the 

SSA algorithm, ideal midline detection, actual midline detection and the MLS calculation.  

Chapter 5 introduces the medical application of brain midline shift. Chapter 6 

summarizes our work. 
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Chapter 2 CT Slice Selection Algorithm 

2.1 Background and introduction 

In clinical settings, although several different levels of CT images can be acquired in the 

head CT scans of one patient, only those slices clearly showing ventricles are valuable in 

the midline shift estimation. Moreover, noise and interference in some images may 

seriously affect the usability of the ventricle structure in these images. In addition, 

clinically speaking, it is neither necessary nor desired to detect midline shift on all CT 

slices. Therefore, the first step in automated midline shift detection is to select the most 

appropriate CT slices to process the detection. 

Currently in clinical practice, the process of slice selecting for MLS diagnosis is 

performed manually by physicians [9, 83]. Physician visually inspects all valuable 

information for MLS diagnosis in all slices, including scan position, skull shape, 

ventricular structure, and the image clarity, and then selects a few appropriate slices for 

further diagnosis. To closely simulate the physician’s operation, the first step in the 

computer aided brain midline shift detection should be an automated slice selection 

process. In addition, this process dramatically reduces the computation time by limiting 

the image processing only on a few slices. We did not find any existing automated 

method to perform this task.  

In this work, a novel algorithm called CT Slice Selection Algorithm (SSA) has been 

developed, to fulfill this requirement and subsequently provide a prerequisite for 

achieving the fully automatic MLS detection. The rest of this chapter is organized as 
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follows: the methodology is introduced in Section 2.2, results are presented and discussed 

in Section 2.3, and the Chapter is summarized in Section 2.4.  

 

2.2 Methodology  

With head CT scan in the clinical environment, dozens of raw images can easily be 

acquired for one patient. However, not all images are ideal for IML detection. As shown 

in Figure 2.1, there are 42 raw CT images obtained from one patient’s CT scan. Some 

images taken from the lower section of the head contains too much noise/interference 

from other organs, such as the eye and nose in slice No.15. Some images capture only a 

small intracranial area because the scan position is too close to the calvaria, as seen in 

slice No.36; some images capture closed skull contours and large intracranial area but 

lack good convexity there rendering them improper for midline detection, such as slice 

No.19; some images with good skull contour and large intracranial area have too little 

ventricle information for MLS detection, such as slice No.31. From the viewpoint of 

anatomical features, ideal CT slices for MLS estimation should contain larger intracranial 

area, closed skull bone contour, good convexity of the skull, and clear ventricle tissue, 

such as No.22 through No.30 in Figure 2.1. Therefore, the CT slice selection should be 

based on the above mentioned features and requirements.  

To effectively select a few appropriate CT slices from a large number of CT scan images 

acquired for each patient, the CT Slice Selection Algorithm (SSA) was proposed.  As the 

flowchart shows in Figure 2.2, this algorithm analyzes every slice by examining multiple 

anatomic features. Raw CT slice is examined by skull detection, closed skull inspection, 

intracranial area detection, convexity inspection, and ventricle visibility identification.  
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Each aspect of the flowchart has been described in the following sections. Among them, 

the last step, ventricle visibility identification, needs multiple detail steps for 

implementation which are introduced in Section 2.2.5. 

 

Figure 2.1 Raw CT slices from one patient’s head CT scan. 
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Figure 2.2 Schematic diagram of CT Slice Selection Algorithm (SSA)  

 

2.2.1 Skull detection 

As the first step in SSA algorithm, the skull detection is firstly implemented on every raw 

CT slice as shown in Figure 2.3. In this step a raw CT image is treated as a raw matrix I 

with m rows and n columns (Eq. 2-1). 
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𝐼 = (𝐼𝑖,𝑗 )    (𝑖 = 1,…  ,𝑚 𝑎𝑛𝑑 𝑗 = 1,…  , 𝑛)                               Eq. 2-1 

where 𝐼𝑖𝑗  represents the intensity of the pixel at the ith row and jth column. Using a 

threshold method, the possible bone pixels can be extracted from the raw matrix to build 

up a new binary matrix B as shown in Figure 2.3-b.  

𝐵 = (𝐵𝑖,𝑗 )  (𝑖 = 1,…  ,𝑚 𝑎𝑛𝑑 𝑗 = 1,…  , 𝑛)                     Eq. 2-2 

 

 

Figure 2.3 Skull detection process on a CT slice (a) Raw CT slice, (b) the detected bones B 

by the threshold method. Bone chips and small holes inside bone region are all detected, (c) 

the candidate skull bone Ca after removing small bone chips, (d) the detected skull 
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where the pixels with their original intensity Iij is larger than the threshold of T. In this 

study, based on experimentation, the value for T is set to 250 (out of 255), which lies 

within the common range for bone intensity within CT images. (See Eq. 2-3). 

𝐵𝑖𝑗 =   
1,       𝑖𝑓 𝐼𝑖𝑗 > 𝑇

0,                𝑒𝑙𝑠𝑒
    (𝑖 = 1,…  ,𝑚 𝑎𝑛𝑑 𝑗 = 1,…  ,𝑛)                    Eq. 2-3 

where, 𝐵𝑖𝑗  is the element at ith row and jth column in the new binary matrix B. Then 

those possible bone pixels constitute a certain number of connected regions 𝐶1 ,𝐶2 ,… ,𝐶𝑝  

by means of the connected component algorithm (CCA) [84]. We choose the ath 

connected region Ca (1≤a≤p) which contains the largest number of elements as the 

candidate skull as shown in Eq. 2-4.  

  )]C(f),C(f),C(f[maxargC p
C

a
k

21                                Eq. 2-4 

where 𝐶𝑘  (𝑘 = 1,… , 𝑝) is the kth connected region and 𝑓(𝐶𝑘) is the number of elements 

in region 𝐶𝑘 . Next, all the other connected regions from the image are removed except for 

the region belonging to the candidate skull. However, some small holes still possibly 

exist in the candidate skull Ca as shown in Figure 2.3-c. To remove those small holes 

inside bone, the binary matrix is copied and inverted to form a new matrix, called the 

inverted matrix M (Eq. 2-5 and 2-6),  

𝑀 = (𝑀𝑖,𝑗 )      𝑖 = 1,…  ,𝑚 𝑎𝑛𝑑 𝑗 = 1,…  ,𝑛                      Eq. 2-5 

with 

𝑀𝑖𝑗 =   
1,       𝑖𝑓 𝐼𝑖𝑗 ∉ 𝐶𝑎
0,      𝑖𝑓 𝐼𝑖𝑗 ∈ 𝐶𝑎

                                       Eq. 2-6 

where 𝑀𝑖𝑗  is the converted intensity of the pixel at the ith row and the jth column in the 

inverted matrix M. Using the connected component algorithm (CCA) again, q pieces 



www.manaraa.com

 

 40 

connected regions (D1, D2, …, Dq) are obtained from the inverted matrix M. Using the 

identified regions of Dk (k = 1 to q), a series of new matrices is produced for each of the 

component of Dk.  Lk (k=1, 2, … , q) is used to represent the pixels within the matrix for 

each component of  Dk.  

𝐿𝑘 =  𝐿𝑘 𝑖 ,𝑗  ,     (𝑖 = 1,…  ,𝑚 and 𝑗 = 1,…  , 𝑛)                        Eq. 2-7 

with 

𝐿𝑘 𝑖𝑗 =   
1,   𝑖𝑓 𝐿𝑘 𝑖𝑗 ∈ 𝐷𝑘   

0,   𝑖𝑓 𝐿𝑘 𝑖𝑗 ∉ 𝐷𝑘    
                                     Eq. 2-8 

After finding each of the components which does not belong to the skull, the area of these 

components is computed. Using the computed areas, only those connected regions with 

an area less than a set threshold S is considered as a hole within the bone structure of the 

original scan. For this study based on the relative sizes of the objects found in brain CT 

scans, S has been set to 200 pixels which is a fair estimation of possible hole size. Once 

these holes have been identified inside the candidate skull structure, they are filled with 

bone intensity (equal to 1 in the binary matrix). This helps unify the overall identified 

bone structure by covering all the holes. A subset of the inverted matrices which are 

identified as holes within the bone structure is given as Hk (k=1, 2, … , q) to express the 

bone hole regions.  

𝐻𝑘 =   
𝐿𝑘 ,       𝑖𝑓   𝑓(𝐷𝑘) ≤ 𝑆

𝑂,         𝑖𝑓   𝑓 𝐷𝑘 > 𝑆  
  (k=1, 2, …, q)                          Eq. 2-9 

where 𝑓(𝐷𝑘) is the number of elements in region 𝐷𝑘  and O is a zero 𝑚 × 𝑛 matrix. Then, 

we can obtain the final detected skull  by combining the candidate skull matrix (J-M) 

with all whitened small holes matrices Lk as shown in Eq. 2-7, 2-8 and Figure 2.3-d. 
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𝛤 =  𝐽 −𝑀 +  𝐻𝑘
𝑞
𝑘=1                                         Eq. 2-10 

where M is the converted matrix defined in Eq-6, J is the matrix with every element equal 

to one. Thus, (J-M) represents the candidate skull corresponding to the connected region 

Ca. 

 

2.2.2 Closed skull inspection 

Followed by the skull detection, the second step in SSA algorithm is the closed skull 

inspection. This process aims to remove the slices with either unclosed skull or with the 

skull containing too many separated regions. The unclosed skull affects the following 

ideal midline identification since the symmetry value calculation through the exhaustive 

symmetric position search process is sensitive to the shape of the skull contour. 

We define a new measure, called skull closing level F, using the number of zero matrices 

among all hole matrices Hk (k=1, 2, …, q).  

𝐹 =  𝑔 𝐻𝑘 
𝑞
𝑘=1                                                 Eq. 2-11 

with 

𝑔 𝐻𝑘 =   
1,            𝑖𝑓 𝐻𝑘 = 𝑂  
0,            otherwise 

                                         Eq. 2-12 

where Hk is the kth hole matrix which was defined in Eq. 2-9, O is a zero 𝑚 × 𝑛 matrix, 

and thus 𝑔 𝐻𝑘  is a binary state-variable used to express whether Hk is a zero matrix. 

When Hk is a zero matrix, it means that the kth connected-converted region Dk belongs 

neither to the candidate skull nor to the small bone hole. Therefore, those zero matrices  
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Figure 2.4 Closed skull inspection. The three left-side images are the raw CT images while 

the bottom three right-side images show the corresponding detected skulls. The black 

regions either inside or outside of the detected skull are the above mentioned Hk with zero 

matrix. Skull closing level of the three slices equals 1, 2, and more, respectively. 
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Hk should be the regions separated by the detected skull   as the black regions either 

inside or outside the detected skull shown in the three right-side figures of Figure 2.4. 

If the computed skull closing level F is equal to 2, it implies that the skull is integrated 

and ideal for the following steps of detection, such as middle slice shown in Figure 2.4. If 

the computed skull closing level F equals to 1, it means the slice only shows a block of 

solid bone. As shown in the upper slice in Figure 2.4, this kind of slice is taken when the 

scan position close to calvaria. If the computed skull closing level F is larger than 2, as 

the bottom slice shown in Figure 2.4, the multiple closing region implies too much 

interference involved in the slice and therefore seriously affect the exhaustive symmetric 

position search in the following ideal midline detection. More, this kind of slices is 

usually taken when the scan position is far away from the center of ventricle. So the 

slices with F>2 are not appropriate for midline detection. Therefore, CT slices with F not 

equal to 2 cannot be used in midline detection due to an inappropriate scan position. The 

skull closing level measure can quantitatively evaluate the integrity of the skull in head 

CT images. After closed skull inspection, all images with F2 are removed from the slice 

subset. 

 

2.2.3 Intracranial area detection 

Based on clinical experience, the ideal CT slice for midline detection generally has larger 

intracranial area, such as the slices No. 22-30 in Figure 2.1. Hence in this step, the area of 

the inner region surrounded by the detected skull, namely the intracranial pixels, is 

calculated and sorted for all remaining slices in the subset.  
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In the subset of images acquired after the closed skull detection step, every CT image 

should contain only two black regions which are separated by the detected skull (F=2 in 

closed skull inspection). One of them is the intracranial region which contains the mass 

center of the skull and the other is the region outside of the skull. In order to calculate the 

intracranial area, the intracranial region has to be distinguished from region outside of the 

skull. This can be achieved using the coordinate of the skull’s mass center. 

Generally, the image moment 𝑚𝑝𝑞  of the order p+q of the digital image  can be defined 

as below, 

𝑚𝑝𝑞 =   𝑖𝑝 ∙ 𝑗𝑞 ∙ 𝛤𝑖𝑗 ,   (𝑝 = 0, 1;𝑞 = 0, 1)𝑚
𝑖=1

𝑛
𝑗=1                         Eq. 2-13 

where 𝛤𝑖𝑗  with the value of 1 or 0 is the intensity of the element at the ith row and jth 

column in the detected skull matrix . Then, the coordinate of the mass center (x0, y0) of 

the detected skull can be obtained by 

 
𝑥0 =

𝑚10

𝑚00

𝑦0 =
𝑚01

𝑚00

                                                       Eq. 2-14 

Thus the connected-converted region Din containing the coordinate of the skull mass 

center (x0, y0) is the intracranial region. The intracranial area Sin of this image is given by 

𝑆𝑖𝑛 = 𝑓 𝐷𝑖𝑛                                                 Eq. 2-15 

The intracranial area of every slice in the subset is calculated and sorted in descending 

order. The first  slices with larger intracranial area are selected out for the following 

inspection. This number of  is a variable that depends on the number of slices for one 

patient or physician’s requirement.  

𝜆 =  𝑀𝑖𝑛(𝛾 , [𝜂 ∗  𝛷] )                                          Eq. 2-16 
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where γ is a default number of selected slices and η is the selected percentage of the 

whole number of slices Ф. After experimenting with various values, 𝛾 = 8 and 𝜂 = 20% 

were finally chosen for this study.  

 

2.2.4 Convexity inspection 

According to practical experience, another important characteristic of an ideal head CT 

image for midline detection is generally a good convexity for the intracranial region. For 

instance, the intracranial regions of the slices No.19-20 in Figure 2.1 which are not ideal 

for midline detection both have integrated skull and larger intracranial area but show 

partially concavity. In contrast, intracranial regions of slices 26 through 28 have good 

convexity. In addition, the concave shape of the intracranial region could affect the 

accuracy of the exhaustive symmetric position search, which is performed in the 

subsequent midline detection. 

To quantitatively measure and evaluate the convexity of the intracranial region, we define 

a new measure Λ, called the intracranial convex measure. As shown in Figure 2.5-c, we 

extract the contour of the intracranial region. Then we can scan those pixels row by row. 

We define the far left and far right junctions (the blue points) of the ith row line (the 

upper red dash line) and the intracranial contour (the black curve) as points LPi and RPi 

in Figure 2.5-c. We use the function 𝜉 𝑖, 𝑗  to describe the out-of-intracranial-region 

pixels between LPi and RPi on the ith row as the green bold line shown in Figure 2.5-c. 

𝜉 𝑖, 𝑗 =  
1,                 𝑖, 𝑗 ∉ 𝑅  and  𝐿𝑃𝑖<j<𝑅𝑃𝑖
0,                                            otherwise

                     Eq. 2-17 
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where R represents the intracranial region. Then the number of the out-of-intracranial-

region pixels on the ith row 𝛹 𝑖   is given as below 

 𝛹 𝑖 =  
 𝜉 𝑖, 𝑗 ,         if ∃ 𝐿𝑃𝑖  and 𝑅𝑃𝑖
𝑅𝑃𝑖
𝑗=𝐿𝑃𝑖

0,                             otherwise

                           Eq. 2-18 

 

 

 

Figure 2.5 Convexity inspection on a CT slice (a) the raw slice, (b) the detected skull, (c) 

the calculation of the intracranial convex measure using the intracranial contour, (d) the 

intracranial convex measure calculation on the image rotated by angle φ. 
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We define the intracranial convex measure Λ using the total number of the out-of-

intracranial-region pixels on all m rows of the image. 

𝛬 =  𝛹(𝑖)𝑚
𝑖=1                                                      Eq. 2-19 

Then, we can rotate the image by φ degree as shown in Figure 2.5-d. The intracranial 

convex measure at angle φ can be calculated and noted as Λφ.  

𝛬𝜑 =  𝛹𝜑 (𝑖)𝑚
𝑖=1                                                 Eq. 2-20 

where 𝛹𝜑 (𝑖) the number of the out-of-intracranial-region pixels on the ith row in the 

image rotated by angle φ. With the sum of the all Λφ at all rotating angles, the total 

intracranial convex measure ΛTotal is given as below 

𝛬𝑇𝑜𝑡𝑎𝑙 =  𝛬𝜑
180°
𝜑=1° =   𝛹𝜑 (𝑖)𝑚

𝑖=1
180°
𝜑=1°                        Eq. 2-21 

Larger values of the total intracranial convex measure ΛTotal represent increasingly worse 

convexity of the intracranial region in a CT image. Using the sorted ΛTotal, we can keep 

the better  CT slices in the slice-subset by removing the ones with worse convexity. 

Value of  can be decided by Eq. 2-16. For the example under study, using γ =

6 and η = 15% around 6 slices were obtained for the slice subset after convexity 

inspection.  

 

2.2.5 Ventricle visibility inspection 

In clinical practice, physicians usually use ventricular system to estimate the actual 

midline towards diagnosing the midline shift. Thus the visibility of ventricles is vital in 
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the actual midline detection. In the last step of SSA algorithm, the selection focuses on 

the visibility of the ventricles in the intracranial region.  

Figure 2.6 shows the schematic diagram of the ventricle visibility inspection step in SSA 

algorithm. After the first four steps of SSA algorithm, the skull is extracted in the CT 

slice. In this step, the main purpose is to select a few slices with the clearest ventricles 

inside the intracranial region.  

K-means clustering is used to distinguish ventricles from other tissue/interference in the 

image. First, we assume that four kinds of objects of interest, namely bone/blood, light 

matter, grey matter, and ventricular tissue exist in the intracranial region of the image.  

 

 

Figure 2.6 Schematic diagram of the ventricle visibility inspection 
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In addition, in some cases, air may exist inside the intracranial region (See figure 2.7). 

We should carefully inspect for air and remove the interference of air in the following 

detection. The intracranial air is never normally present in this location as shown in 

Figure 2.7. Air bubbles may be millimeters in size, or large collections of air may be seen. 

Air can also leak intracranially from a mastoid and associated temporal bone fracture [85]. 

Postoperative gas can be a normal finding in patients after craniotomy and may persist for 

weeks [86]. Rearly, air can be introduced latrogenically through venous and arterial 

catheters [87]. Intracranial gas can also occur in dive-related decompression illness [10]. 

Intracranial air appears black on all CT images. For instance, the intracranial air in Figure 

2.7 is the black region close to the calvaria. To remove this region, we use threshold 

method by removing the intracranial pixels with the intensity in the range of 0-5.  

 

 

Figure 2.7 Brain CT image with air in intracranial region 

 

http://dict.cn/calvaria
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Except for the possible existing intracranial air, there are four objects of interest 

considered inside the intracranial region.  Each of the four objects has a particular range 

of gray scale. Using K-means clustering, the pixels related to lowest intensity center are 

labeled as belonging to the ventricle class.  

Here, a new measure, called Ventricle Fidelity Measure (Fv), is introduced to describe the 

visibility of the ventricles in CT slices. Ventricle Fidelity Measure is defined by dividing 

the number of pixels labeled as the ventricle class by the total number of pixels after the 

k-means clustering. Generally, the larger Ventricle Fidelity Measure is, the more visible 

the ventricle is in image. Using a threshold (120 pixels in this work), only those CT slices 

with large Fv are kept in the SSA subset for the subsequent midline detection. It is worth 

noting that Ventricle Fidelity Measure only estimates the quality of CT slice containing 

ventricle. There is also a chance that some slices might be selected mistakenly due to the 

inherent noise within the scan or improper intensity center chosen by the k-means method 

for the ventricle clusters. However, given the fact that usually numerous candidate CT 

slices get shortlisted at this step, the chances of selecting valuable CT slices within this 

subset is high. In sum, finding the CT slices containing clear ventricles (large Fv) is a key 

point for the slice selection step based on k-means clustering and Fv sorting in the SSA 

algorithm.  

Using the sorted Fv, we can keep the better  CT slices in the slice-subset by removing 

the ones with worse Ventricle Fidelity. Value of  can be decided by Eq. 2-16. In this 

study, using γ = 4 and η =10%, around 4 slices were obtained finally in the SSA subset.  
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2.3 Result and discussion 

2.3.1. Data 

This database contains 3133 axial CT scan slices acquired across 70 patients with cases 

of both mild and severe Traumatic Brain Injuries (TBI). All the available CT scans have 

been utilized in testing the system’s processes and in the estimation of ideal midline.  

 

2.3.2. Results and discussion 

With the implementation of the SSA algorithm on the raw slices, only a few slices which 

are appropriate for midline detection remain in the SSA subset. For instance, the number 

of initial CT slices for the subject used for the results presented in Figure 2.8 was 40. 

Most of these 40 slices are not suitable for midline detection, as some slices contain too 

much noise and interference from other organs/tissues, some other slices have small 

representation of intracranial area, some slices show unclosed skull, and some slices 

contain too little ventricle representation for detection.  

In the first step of the SSA algorithm (See the diagram in Figure 2.2), the skull on every 

slice is detected. Closed skull inspection remove all slices with F2. Figure 2.9 shows 

that 15 slices remain after the closed skull inspection. Compared with all raw slices of 

this patient in Figure 2.8, those first several slices in the raw slice set with much 

interference from other organs are removed from the list.  

With the implementation of the third step in SSA, intracranial area detection, the slices 

with smaller intracranial area are removed from the subset. Figure 2.10 shows the result 

of applying the intracranial area detection. Compared with the images in Figure 2.9, the  
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Figure 2.8 Raw CT slices (40 slices) from one patient’s head CT scan. 
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Figure 2.9 Selected CT slices after the closed skull inspection 

 

 

Figure 2.10 Selected CT slices after the intracranial area detection 
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slices removed in this step not only have small intracranial area but also contain little to 

no ventricle in them. Thus, those removed slices are indeed not suitable for midline 

detection. 

The fourth step in SSA is convexity inspection. Six slices remains after the convexity 

inspection as shown in Figure 2.11. All the skulls of these six slices have good convexity 

and are appropriate for the exhaustive symmetric position search in ideal midline 

detection. Among them, the slices with clear ventricle information are selected out using 

the followed ventricle visibility inspection.  

 

Figure 2.11 Selected CT slices after the convexity inspection 
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Figure 2.12 CT slices after Fv sorting in Ventricle visibility inspection 
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In the ventricle visibility inspection step, with the k-mean segmentation, the pixels 

belonging to ventricle class are used in the calculation of ventricle fidelity measure (Fv). 

The larger the ventricle fidelity measure is, the more ventricle information the slice 

would show. As shown in Figure 2.12, the slices are sorted by the value of Fv. Four slices 

with large Fv value are selected as the candidate slices in the SSA subset for the 

following midline detection. It can be seen that the top left slice with the largest ventricle 

fidelity measure Fv= 0.054 shows the largest ventricles. This slice is considered as the 

first candidate slice in the SSA subset. 

 

2.4 Summary 

The CT slice selection algorithm is primarily based on the anatomical characteristics of 

the skull and closely simulates the process of manual CT slice selection and decision 

making in midline estimation by physicians in clinical practice. With the implementation 

of SSA, a vast reduction can be achieved of the number of slices that is used for the 

computation of IML detection steps. For instance, the case used in Figure 2.8-2.12, the 

slices selected by the SSA algorithm is 4 pieces which is much less than the 40 pieces 

raw slices of this patient. Those selected slices with closed skull, large intracranial area, 

good convexity, and clear ventricle information have been found to be acceptable for use 

in midline detection with the physician’s confirming. Having fewer and more appropriate 

slices effectively increases the efficiency of the algorithm and also has the potential to 

save the cost and time required in practice. 
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Chapter 3 Ideal Midline Detection 

3.1 Background and introduction 

Human brain has two hemispheres with an approximate bilateral symmetry distinguished 

by ideal midline (IML), which is the longitudinal fissure marked by the falx cerebri in the 

mid-sagittal plane [10, 88]. The computer-aided estimation of IML has attracted a great 

deal of attention in the recent two decades [88-90]. The inter-hemispheric fissure line 

segments have been widely used to detect the ideal midline on MRI images which usually 

has a high visibility on the fissure line [91, 92]. In the case of brain CT slices, 

longitudinal fissure cannot be used as an only primary index for detection due to the low-

to-zero visibility of the fissure which can seriously affects the accuracy of detecting the 

Mid-Sagittal Plane (MSP) or IML. Moreover, some pathological symptoms, such as a 

tumor, may curve the fissure and completely change the direction of the fissure. To avoid 

the above limitation, skull symmetry has been included as another important anatomical 

feature in MSP/IML detection [83, 92]. G. Ruppert et al. extracted the MSP based on 

bilateral symmetry maximization [92]. W. Chen et al. combined bone symmetry and 

direct detection of the anatomical features in CT images in IML detection [9]. This 

method works effectively and accurately on a single CT slice but lacks connection or 

comparison with the detection results from other CT slices of the same patient.   

In this chapter, we propose a four-step algorithm to automatically detect brain ideal 

midline on CT images by considering both anatomical features and the connections 

among CT slices.  
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3.2 Methodology 

After the slice selection is performed using CT Slice Selection Algorithm (SSA) 

proposed in Chapter 2, only a few (around 4 pieces) appropriate slices are considered in 

ideal midline detection. Ideal midline detection (IML detection) is designed as a two-step 

procedure, an approximate IML detection and a refined IML detection, with the full 

considerations of both anatomical features and the connections among CT slices.  

 

 

Figure 3.1 Schematic diagram of ideal midline detection 

 

As the schematic diagram shown in Figure 3.1, in the first step, the ideal midline can be 

approximated using an exhaustive symmetric position search based on the skull 

symmetry. More, including other features of the skull and brain can help improve the 

accuracy of the approximation. Thus, in the refined IML detection step, the bone 
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protrusion on the upper part of the skull and the falx cerebri in the lower part are used to 

accurately detect the position of the ideal midline. To fully consider the connection 

among the slices in the subset, we utilize a global rotation assumption in both steps to 

determine the rotation angle of the skull. This method can further reduce the detection 

error due to individual non-ideal image. 

 

3.2.1 Approximate IML detection 

To find the approximate ideal midline on a brain CT image, we use the exhaustive 

symmetric position search algorithm which was a continuation of the work done by 

Wenan Chen et. al. on ideal midline detection [9]. To improve the accuracy of the 

algorithm, a few modifications are made in the exhaustive search and a global rotation 

method is firstly used in the approximate ideal midline detection. 

We use an exhaustive rotation angle search around the mass center of the skull to find an 

line which can maximize the symmetry of the resulting halves. In Chapter 2, the skull  

and its mass center (x0, y0) have been determined by Eq. 2-10 and Eq. 2-14, respectively. 

As shown in Figure 3.2, the row symmetry is defined as the difference in distance 

between each side of the skull edge and the current approximate midline. The CT image 

is rotated around the mass center of the skull. The symmetry cost 𝑆𝜃  of the image at the 

rotation angle 𝜃 is calculated as the sum of all row symmetry in the resulting image as 

shown in Eq. 3-1. 

𝑆𝜃 =   𝑙𝑖 − 𝑟𝑖 
𝑚
𝑖=1                                                    Eq. 3-1 
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Figure 3.2 Symmetry cost calculation. The symmetric line passes through the mass center. 

Measure li and ri are the distance between the edge of the skull on the left/right side and the 

current approximate midline at the ith row. (a) the slice with 0 rotation angle, (b) the slice with  

rotation angle. 

 

where m is the number of rows in the image with the rotation angle 𝜃 (-45º< 𝜃 <+45º as 

used in this study) and measure li and ri are the distance between the edge of the skull on 

the left/right side and the current approximate midline at the ith row. More details can be 

found in [9]. Finally, the rotation angle 𝜃  with the minimum symmetry cost 𝑆𝜃  

determines the rotation direction of the midline of the brain for each particular CT slice. 

]S,S,S[minargθ
plpp

pjθ
p  

21
                                        Eq. 3-2 

where 𝜃𝑝  is the rotation angle of the midline on the pth slice and 𝑆𝜃𝑝𝑗  is the symmetry 

cost of the pth slice at the rotation angle  𝜃𝑝𝑗 .  
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All CT slices in the SSA subset are processed one piece at a time using exhaustive 

symmetric position search. However, due to the non-uniform-thickness of the skull or due 

to serious deformation of the skull on one side after injury, it is hard to get an accurate 

position of the midline by processing only one slice. In this work, a global rotation 

assumption is used to decide the approximate ideal midline of all the CT images from one 

patient with full consideration of the connection among all the slices.  

In the global rotation assumption, we assume that all CT images of one patient have the 

same rotation angle of the ideal midline due to the fixed posture of the patient during 

scanning. The rotation direction of the approximate ideal midline is determined by the 

median value of the rotation angles of all 6 slices in the SSA subset as shown below. 

  ],,[medianθ
pθ

a  21                                        Eq. 3-3 

where the angles 𝜃1 , 𝜃2 ,⋯  𝜃𝜆  are the rotation angles of the midlines determined by the 

exhaustive symmetric position search,  is the number of slices in the SSA subset, and 𝜃𝑎  

is the approximate ideal midline of the whole set of slices. At the end of the approximate 

IML detection, the approximate ideal midline on each slice is calibrated to the vertical 

direction by rotating the skull by −𝜃𝑎  angle. 

 

3.2.2 Refined ideal midline detection 

Once the approximate midline is estimated and calibrated, brain anatomical features, such 

as the position of the falx cerebri and protrusion of skull bone, are used to refine the 

detection. In the detection of the falx cerebri and protrusion, we use the same algorithm 

from our previous work [9]. 
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Figure 3.3 The falx cerebri and the bone protrusion 

 

The falx cerebri is a strong arched fold of dura mater that descends vertically in the 

longitudinal fissure between the left and right cerebral hemispheres (Figure 3.3). In this 

work, edge detection method and Hough transform are used to detect this anatomical 

feature quickly and accurately. On the other hand, a bone protrusion is located in the 

anterior section of the skull. As shown in Figure 3.3, the bone protrusion curves down to 

a minimum point which is considered to be the upper starting point of the falx cerebri. To 

locate the lowest point of the protrusion curve, the derivative of the curve is calculated in 

a limited neighborhood area, which has been chosen to be 10-15 pixels in this work. The 

local minima point a is determined by the following equation. 

)]x()wx()wx([maxargx
x

a  2                        Eq. 3-4 
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where the function )x(  is the extracted curve of the interior bone edge and w is the 

neighborhood width. In fact, several small local minimal points may exist around the 

neighbor area of the protrusion due to the noise of the image or the irregularities of the 

skull. Using the maximal second derivative of the curve as the point a, Eq. 3-4 is used to 

successfully extract the true protrusion minimal point by avoiding the influence of noise. 

More details of the detection of the falx cerebri and the bone protrusion can be found in 

[9]. 

Using the detected falx cerebri and the bone protrusion, we can obtain the refined rotation 

angle 𝜃𝑞  of the midline on each slice. Again, the global rotation assumption is used to 

determine the refined ideal midline of the whole set of slices. Rather than using the 

median method in the approximate midline detection, the weighted average method is 

used in this refine detection step. The rotation angle 𝜃𝑓  of the refined ideal midline of all 

the slices is given by 

𝜃𝑓 =
 𝜇𝑞 ∙𝜃𝑞
𝜆
𝑞=1

 𝜇𝑞
𝜆
𝑞=1

                                                  Eq. 3-5 

where 𝜃𝑞  is the refined rotation angle of the midline on the qth slice and  𝜇𝑞  is the weight 

of 𝜃𝑞  in the refined IML detection calculation.  

𝜇𝑞 =   

1                if the falx cerebri and protrusion are both detected

ν1                    if only the  falx cerebri is detected                     

ν2                     if only the protrusion is detected                      

0                  if neighter falx cerebri nor protrusion is detected

             Eq. 3-6 

where the values of ν1 and ν2 are both in the range of 0-1. We set ν1 = 0.2 and ν2 = 0.3 

in this work. 
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At the end of the refined IML detection, the ideal midline on each slice is calibrated again 

to the vertical direction by rotating the skull by −𝜃𝑓  angle. Therefore, in the two-step 

ideal midline detection, the ideal midline is centered by the mass center of the skull and 

rotated by an angle of  – (𝜃𝑎 + 𝜃𝑓) from the original position in the slice. 

 

3.3 Results and discussion 

3.3.1 Data 

This database contains original 3133 axial CT scan slices acquired across 70 patients with 

cases of both mild and severe Traumatic Brain Injuries (TBI). All the available 280 CT 

images in the SSA subset have been utilized in testing the ideal midline estimation of the 

proposed system.  

 

3.3.2 Results and discussion 

The result of the ideal midline detection is displayed in Figure 3.4. With the 

implementation of the algorithm, we can see that the detected ideal midline is accurately 

located in the middle of the skull and that the skulls in each scan are calibrated correctly. 

In order to quantitatively measure the performance of the proposed system, the 

collaborating physician manually estimated IML is used as the ground truth. With a strict 

definition of accuracy, which is an allowed error of three pixels in horizontal distance δ 

between the estimated IML and the ground truth, the accuracy of IML estimation in this 

system is calculated as below. 
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Figure 3.4 The results of the ideal midline detection. Upper figures are the raw slices selected 

by SSA algorithm, while the bottom figures show the corresponding detected ideal midline  

 

As Figure 3.5 shows, two possible spatial relationships between the ground truth ideal 

midline (red dash line) and the detected one (blue solid line) can be used for calculation 

of the difference between the two methods. In case 1 (Figure 3.5-a), there is no cross 

between the ground truth ideal midline (red dash line) and the detected line (blue solid 

line). In case 2 (Figure 3.5-b), the point of crossing makes the two lines build two 

triangles. The values d1 and d2 represent the distance between the top row points distance 

and bottom row points distance of the two lines. The value h0 is the length of the ground 

truth ideal midline between the top and bottom rows in case 1, while h1 and h2 are the 
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length of two segments of the ground truth line separated by the point of crossing, 

respectively. The horizontal distance δ between the ground truth midline and the detected 

one is calculated as follows: 

𝛿 =
𝑆


                                                          Eq. 3-7 

where S is the area enclosed by the two line segments and the top and bottom line, while 

h is the length of the ground truth. Thus, h=h0 in case 1 and h=h1+h2 in case 2. 

 

 

Figure 3.5 Two possible cases of the relationship between the ground truth ideal midline (red 

dash line) and the detected ideal minline (blue solid line). 
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In case 1,  

𝑆𝑐𝑎𝑠𝑒  1 =
1

2
 𝑑1 + 𝑑2 0                                               Eq. 3-8 

𝛿𝑐𝑎𝑠𝑒  1 =
𝑑1 +𝑑2

2
                                                          Eq. 3-9 

In case 2, 

𝑆𝑐𝑎𝑠𝑒  2 =  
1

2
𝑑11 +

1

2
𝑑22                                         Eq. 3-10 

𝑑1

𝑑2
=

1

2
                                                        Eq. 3-11 

Then, the horizontal distance δ in case 2 can be calculated as: 

𝛿𝑐𝑎𝑠𝑒  2 =
𝑑1

2 +𝑑2
2

2(𝑑1+𝑑2)
                                                Eq. 3-12 

 

Table 3.1 Comparison on the accuracy of IML estimation 

Method Our method Method in [9] 

Number of patients 70 40 

Number of CT slices 280 391 

Image format JPEG JPEG 

Image resolution 512 ×512 512 ×512 

Criterion for accuracy δ ≤ 3 δ ≤ 3 

Accuracy 96.9% 95% 

Mean value of error δ 2.1 2.9 
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With the aforementioned strict definition of accuracy, which is an allowed error of three 

pixels in horizontal distance δ between the estimated IML and the ground truth, the 

accuracy of IML estimation in this system is 96.9%, which is higher than 95% reported in 

[9] as shown in Table 3.1.  

 

Table 3.2 Comparison on the mean value of error for IML estimation 

Method Our method Method in [93] Method in [94] 

Number of CT slices 280 23 23 

Image format JPEG Analyze 7.5 Analyze 7.5 

Mean value of error δ 2.1 2.9 3.5 

 

We also compare our results with the work completed by other research groups. In order 

to evaluate the result of the mid-sagittal plane estimation, Ruppert et al. used an average 

z-distance measure to indicate the displacement between the resulting plane and the 

ground truth plane inside one image [93]. Therefore, the average z-distance measure has 

the similar physical meaning as the error δ in our method. The smaller the mean value of 

error δ, the closer the estimated IML is to the ground truth. As the comparison in Table 

3.2, the mean value of the error δ in our method is only 2.1 pixels, which is much less 

than the ones reported in [93, 94]. The above experimental results demonstrate the high 

reliability of the proposed system.  
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3.4 Summary  

In this study, we propose a system to identify the ideal midline using CT scans of the 

patients. With the assistance of CT Slice Selection Algorithm (SSA) in the previous 

chapter, ideal midline detection works only on a few most suitable slices. With the 

implementation of the exhaustive symmetric position search, an approximate ideal 

midline is detected. Using the position of the falx cerebri and protrusion of skull bone, 

the position of ideal midline is further refined. In order to enhance the accuracy of the 

ideal midline detection, the global rotation assumption fully considers the connection 

among CT slices and thereby compensates the error generated by using a single CT slice. 

The high accuracy of this system on ideal midline detection shows the potential for such 

a system to be implemented in clinical settings.  
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Chapter 4 Actual midline detection and midline shift 

estimation 

4.1 Background and introduction 

The degree of the midline shift is an important index for clinicians to assess the TBI 

severity and ICP level. The detection of the actual midline position is crucial in the 

estimation of midline shift. Using ventricle position to detect the actual midline is one of 

the most popular methods in detecting the MLS. 

In detecting the brain midline shift, the image segmentation method is generally the most 

important step of detecting ventricles in a specific CT slice [9, 95-97]. A validation 

process is generally employed to re-examine and further refine the ventricle segmentation 

[94].  

A model based on quadratic Bezier curve, to detect the actual midline shift is proposed by 

Liao et al [96].  In this method the CT image is divided into three parts. The central curve 

is formed by a quadratic Bezier curve in which the genetic algorithm is applied to prevent 

the Bezier Curve reaching a local minimum. Although the model is simple and effective, 

the accuracy of the method is reported to decrease sharply (down by 41% reported in [96]) 

on CT slices with spontaneous intracranial hemorrhage. 

The linear regression model named H-MLS model is introduced by Liu. et al. [97] to 

simulate the relationship between the hemorrhage and the midline deformation. The 

midline shift (MLS) is predicted by the H-MLS model and is adjusted based on the 

symmetry information that is not always true in physical circumstances.    
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A known high-accuracy method for brain midline estimation utilizes the central position 

of the ventricle system as the midline estimate. Image segmentation methods based on 

statistical models have attracted a lot interest but have been notorious for being extremely 

time consuming during processing. Chen et al. proposed a method based on Gaussian 

Mixture Model (GMM) and template matching to detect the ventricle system on brain CT 

images. As aforementioned, in this method GMM [95] was utilized which provided better 

results as compared to ICM and MASP [9], however, Chen’s result suffers high 

computation time and fails sometime in identifying ventricles boundary.  

Segmentation based on active contour methods has attracted a great deal of attention in 

the past quarter century. In general, the active contour model has two categories: the 

parametric active contour model and the geometric active contour model. Kass et al. 

proposed the Snake model, namely explicit active contour model, to extract the objects of 

interest from the image [98]. Various Snake models have been proposed in different 

applications, such as edge detection, curve detection, segmentation, shape modeling, and 

visual tracking [99-105]. Although this family of parametric active contour models is 

effective for many applications, it suffers some inherent difficulties such as the required 

prior shape information, the manual accurate initialization, and the inseparable contours 

during the course of propagation [106-110].  

Geometric active contour models [111] are widely used in medical imaging for 

segmentation of cerebral vessels, left ventricle of heart, as well as pelvic bone [112-114]. 

Caselles et al. [115] and Malladi et al. [116] introduced the implicit geometric active 

contour model based on curve evolution theory [117] and level set method [118]. In this 

group of geometric active contour model, the topology structure can be changed 



www.manaraa.com

 

 72 

automatically due to the implicit function’s innate characteristics. Thereby solving the 

shortcoming of parametric active contour model where it fails to automatically separate 

curves. An intrinsic limitation of the traditional level set segmentation method is the re-

initialization problem and its high sensitivity to local image intensities, which is 

overcome by the variational level set method. Li et al. [119-121] proposed a region-based 

active contour model with variational level set function using a distance regularization 

term. This method not only eliminated the need for re-initialization but also coped with 

the intensity inhomogeneity.  

In this thesis, the region-based active contour model [120] is employed in the detection of 

ventricular tissue. In order to improve the detection results and speed up the contour 

evolution, a new proposed algorithm is used narrow the focus only to the region of 

interest before using image segmentation methods. After the segmentation, a ventricle 

identification process is used to estimate the actual midline and midline shift.  

The rest of this chapter is structured as follows: In Section 4.2, the methodology of the 

proposed method is introduced. In Section 4.3, the result and discussion is given. The last 

Section gives the summary of the actual midline detection and midline shift estimation 

system.  

 

4.2 Methodology 

An illustration of the five major steps in the shifted midline estimation framework is 

shown in Figure 4.1. First, Window Selection Algorithm is run on the CT slices selected 

by the SSA algorithm to confine the region of interest. Weighted median filtering is then 

applied to remove noise and speed up the subsequent segmentation step. Utilization of the 
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level set segmentation effectively extracts potential ventricle contours in the WSA 

window. Subsequently, Ventricle Identification Algorithm employed as post-processing 

step to identify the right and left lateral ventricles. Lastly, the brain midline is estimated 

using the position of the ventricles. The following section will describe the details of each 

step.  

 

 

Figure 4.1 Schematic diagram of the five-step algorithm for actual midline 

estimation  
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4.2.1 Window Selection Algorithm 

In order to provide the initialization for level set segmentation and reduce time 

complexity of the algorithm, a new algorithm, named Window Selection Algorithm 

(WSA), has been proposed in this work. This algorithm helps chooses the best suitable 

slice from the SSA subset and confines the region of interest for segmentation within a 

dynamic selected window.  

 

 

Figure 4 2 Schematic diagram of Window Selection Algorithm 

 

The implementation of the WSA algorithm begins with an initial window setting on the 

CT image. Here the calibrated ideal midline (see chapter 3) acts as a guide in the initial 

seed window choosing. Starting with this initial window, the WSA algorithm scans the 

image to choose the most suitable window within each CT slice. Subsequently, 

comparison is made among the selected windows from each CT slice in the SSA subset, 
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using which the WSA algorithm selects the best slice with the window of interest which 

adequately represents the ventricle structure as the initialization for segmentation.  

The figure 4.2 shows the WSA algorithm schematic diagram. It should mention that 

WSA algorithm works on the SSA subset in which every CT slice has been calibrated to 

its center after ideal midline detection. Therefore, another K-mean clustering should be 

applied as we did in SSA algorithm (Chapter 2) in which the pixels related to lowest 

intensity center are labeled as belonging to the ventricle class. As aforementioned, the 

WSA algorithm is designed to confine the region of interest. Since the speed of the 

contour evolution in the following level set segmentation depends on the image size to a 

great extent, narrowing down the region of interest only to the area containing the 

ventricles can effectively accelerate the algorithm. Based on the anatomical 

characteristics and the experimental results, we set the seed window to an appropriate 

default size which is 85*115 pixels (width*height) in this work. The WSA algorithm 

scans the seed window within the intracranial region to select the appropriate window 

with the most ventricle pixels on each slice. To indicate the likelihood of a window 

containing ventricles, a new measure, called Window Fidelity Measure (Fw), is proposed. 

Window Fidelity Measure is defined by the percentage of pixels belonging to the 

ventricles inside the window. With the implementation of the seed window scan on all 

slices in the slice subset, the maximum Window Fidelity Measure (max-Fw) and the 

related window position of every slice are calculated. By sorting those max-Fw values, 

the best candidate slice with the top Fw value is selected for execution of the following 

segmentation.  
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In addition, considering just the discrete points within the window independently is not so 

meaningful in practice.  It is more important is to consider the points set composed of 

connected components as the candidate object of study. Thus, Connected Component 

Algorithm (CCA) was employed before the window scan in the WSA algorithm to 

eliminate the noise, namely those discrete points or tiny point-groups which were 

wrongly labeled as possible ventricles. Using CCA, those regions that fall below the 

threshold size of connectedness (60 pixels in this work) are considered to be too small 

and thus discarded. 

Therefore, the WSA algorithm not only selects the best candidate slice but also confines 

the working region only to the most suitable window.  

 

4.2.2 Weighted Median Filter  

Prior to level set segmentation, image filtering for noise removal is normally 

recommended. Image noise can indirectly increase the computational costs and therefore 

increase time in the segmentation step by increasing the number of iterations. In addition, 

some images fail to be segmented due to the noise. Furthermore, during the ventricle 

identification step, the less noise the image has, the more efficient and accurate the 

algorithm possess. In this work, weighted median (WM) filter is used to remove noise 

further before segmentation. The weighted median filter is a natural extension of the 

median filter [122]. WM filter still keeps the advantage of the median filter and is more 

reliable by giving more emphasis to detail information of the sample. With the weights, 

the WM filter can be better to preserve desired signal structures than median filter [123]. 

For a median filter with a window width 2k+1, the details only are preserved at most k+1 
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points. Since a smaller window is always needed for preserving smaller details in signals, 

the noise could not be reduced effectively in median filter method [122]. The WM may 

resolve this dilemma using a long enough window and weights set. Firstly, the noise can 

be suppressed effectively by a longer window. Secondly, the weight can preserve details 

lasting less than k+1 points. Some versions of the WM filter have already been widely 

applied in image processing [124-126]. The justification of using median filtering 

techniques has been discussed further in the result section 4.3.  

 

4.2.3 Ventricle segmentation based on level set method 

The level set method represents contours as the zero level set of an implicit function 

defined in a higher dimension, usually referred to as the level set function, and to evolve 

the level set function according to a partial differential equation [127]. Generally, there 

are two kinds of active contour models, the parametric active model and the geometric 

active model. Comparing to geometric active contour, the parametric active contour such 

as Snake Model [98] fails to adapt the contour to topological change. Geometric active 

model implemented by level set method is known as the variational level set method [108, 

128]. In this work, the region-based geometric active contour model in [120] is used 

owing to its two benefits: (1) it avoids the expensive re-initialization of the level set 

function after some iterations and (2) it has reduced sensitivity for non-homogeneous 

images. 

Here, we consider a two-dimensional gray level image 𝐼:  Ω → ℜ, where  Ω ⊂ ℜ2 is the 

image domain and I is the image intensity [120]. C represents closed contour in the 2-D 

image domain (𝐶 ⊂ 𝛺) and segments the image into two regions: Ω1 = outside(𝐶) and  
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Ω2 = inside(𝐶) . The contour C is represented by the zero level set of a Lipschitz 

function  φ:  Ω → ℜ , which is a level set function. The energy function 

ℱ 𝜑,𝑓1 , 𝑓2  subject to minimization is defined as  

ℱ 𝜑, 𝑓1 𝑥 ,𝑓2 𝑥  = ℇ 𝜑, 𝑓1 𝑥 ,𝑓2 𝑥  +  𝜇𝒫 𝜑                            Eq. 4-1 

where the external energy  ℇ 𝜑,𝑓1 𝑥 ,𝑓2 𝑥   drives the zero level set towards the object 

boundaries, while the internal energy  𝜇𝒫 φ   penalizes the deviation of 𝜑 from a signed 

distance function during its evolution. The external energy can be rewritten as below, 

ℇ 𝜑,𝑓1 𝑥 ,𝑓2 𝑥  = ℇ𝑓 +  𝑣 𝐶     

                               =  𝜆𝑖  ( 𝐾𝜎 𝑥 − 𝑦  𝐼 𝑦 −  𝑓𝑖 𝑥  
2 𝑀𝑖(𝜑 𝑦 )𝑑𝑦)𝑑𝑥  2

𝑖=1  

+ 𝑣  |𝛻𝐻(𝜑 𝑥 )|𝑑𝑥                                                                   Eq. 4-2 

where the fitting energy ℇ𝑓  minimizes the gray value variance in the separated phases and 

the contour length |C| smoothes the curve.  In Eq. 4-2, x and y is used to describe the 

pixel location, the kernel function 𝐾𝜎  represents a 2-D Gaussian kernel with  𝐾𝜎 𝑢 =

1

(2𝜋)𝜎2 𝑒
−

|𝑢 |2

2𝜎2  
  (σ is positive constant), 𝜆1 and  𝜆2 are constants in the fitting energy item, v 

is a constant in the contour length item, and I(y) indicates the image intensity. The fitting 

functions 𝑓1 𝑥  and 𝑓2 𝑥  reflect the intensity in the region with center x and can be 

calculated as below, 

 𝑓𝑖 𝑥 =
𝐾𝜎  𝑥 ∗[𝑀𝑖 𝜑 𝑥  𝐼(𝑥)]

𝐾𝜎 𝑥 ∗𝑀𝑖(𝜑 𝑥 )
, (i = 1, 2)                                   Eq. 4-3 

where the operator  * denotes convolution. Using the fitting function makes the 

variational level set method tolerant to the non-homogeneity in images to some extent. 

 𝑀𝑖(𝜑) is defined by 

𝑀𝑖(𝜑) =  2 − 𝑖 𝐻 𝜑 𝑥  +  𝑖 − 1  1 −𝐻 𝜑 𝑥   , (𝑖 = 1, 2)             Eq. 4-4 
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where the Heaviside function H is approximated by a smooth function  𝐻휀 𝑥  and given 

as below, 

𝐻휀 𝑥 =  
1

2
 1 +  

2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛  

𝑥

휀
                                        Eq. 4-5 

The derivation of 𝐻휀 𝑥  is as follows. 

𝛿휀 = 𝐻휀
′  𝑥 =

1

𝜋

휀

휀2+𝑥2                                                   Eq. 4-6 

The internal energy 𝜇𝒫 φ  in Eq. 4-1 consists of a constant 𝜇  and a level set 

regularization term 𝒫 φ . 

𝒫 𝜑 =  
1

2
( 𝛻𝜑 𝑥  − 1)2𝑑𝑥                                     Eq. 4-7 

This regularization item 𝒫 φ   helps stabilize the curve evolution and avoids the time 

consumption due to re-initialization, which is the highlight of the variational level set 

method used in this work. 

With a fixed 𝑓1 and 𝑓2, the energy function ℱ 𝜑, 𝑓1 , 𝑓2  in Eq. 4-1 can be minimized by 

solving the gradient flow equation as follows: 

𝜕𝜑

𝜕𝑡
= −𝛿휀 𝜑   𝜆1  𝐾𝜎  𝑥 − 𝑦  𝐼 𝑥 −  𝑓1 𝑦  

2 𝑑𝑦 − 𝜆2  𝐾𝜎 𝑥 − 𝑦  𝐼 𝑥 −  𝑓2 𝑦  
2  𝑑𝑦  

+ 𝑣𝛿휀 𝜑 𝑑𝑖𝑣  
𝛻𝜑

 𝛻𝜑 
 +  𝜇  𝛻2𝜑 − 𝑑𝑖𝑣  

𝛻𝜑

 𝛻𝜑 
                                                        Eq. 4-8 

with 

 −δε φ   λ1  Kσ x − y  I x −  f1 y  
2 dy− λ2  Kσ x − y  I x −  f2 y  

2  dy  

is the data fitting term;  

 𝑣𝛿휀 𝜑 𝑑𝑖𝑣(
𝛻𝜑

|𝛻𝜑 |
) represents the arc length term  

 𝜇(𝛻2𝜑 − 𝑑𝑖𝑣(
𝛻𝜑

|𝛻𝜑 |
)) is the level set regularization term  
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The segmentation used in this work is based on the level set evolution Eq. 4-8. Further 

details can be found in reference [120]. 

The terminal condition of curve evolution determines the number of iterations and 

segmentation accuracy. In this work, the contour length difference between iterations is 

used as the terminal condition of the evolution. When the absolute difference between the 

current and the previous contour length is less than a default threshold S (S=3 pixels in 

this work), the curve evolution is close to stable on this iteration, as shown in Eq. 4-9.  

  𝐶 𝑡  −  𝐶 𝑡 − 1   < 𝑆                                     Eq. 4-9 

Owing to the complexity of the medical image, it is possible that some iteration curve 

satisfying Eq. 4-9 only represents a slow-down in evolution but is still far away from 

reaching the real object boundary. Using an uninterrupted iteration time to guarantee the 

stability of the evolution is necessary for a robust terminal condition. Therefore, we set T 

times (T=20 in this work) evolutions continuously satisfying Eq. 4-9 as the terminal 

condition of the curve evolution. This ensures that the terminal condition will not be 

reverted in the next iteration. 

Using level-set segmentation in combination with the terminal condition as discussed 

above, potential ventricle contours are extracted from the WSA window on the candidate 

CT slice. Generally, two ventricle contours should be found corresponding to the right 

and left lateral ventricles. However, due to the complexity of CT images, in practice, less 

than or more than two contours are possibly found by the level set segmentation. 

Therefore, we need the following ventricle identification process to identify the actual 

ventricles. 
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4.2.4 Ventricle identification and actual midline estimation 

 

 

Figure 4.3 Schematic diagram of Ventricle Identification Algorithm 

 

Following ventricle segmentation, Ventricle Identification Algorithm (VIA) is proposed 

to identify the actual right and left lateral ventricles for subsequent actual midline 

estimation process. 

As the schematic diagram in Figure 4.3 illustrates, the first step of VIA is to select 

candidate contours from a set of contours obtained from level set segmentation. Here, the 

candidate contours are the contours with high probability of representing the actual right 

and left lateral ventricles. Based on experience, unclosed contours and contours with 

short lengths should be removed. We use the Connected Component Algorithm (CCA) 

[84] to remove the unclosed contours. Separately, a threshold method is used to remove 

the shortest contours. Setting a contour-length threshold of  𝑙𝑐  (𝑙𝑐 = 60 pixels in this 

work), any contour with the length less than 𝑙𝑐  is removed directly by thresholding. In 

addition, if the number of the contours is still greater than three, after the above selection, 
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three contours with the longest length are selected as the candidate contours. Therefore, 

the number of candidate contours should be equal to or less than three.  

The following ventricle identification is based on the number of candidate contours and 

their mass center positions. The mass center calculation method is introduced in Chapter 

2. Thus, the coordinate of the mass center (x, y) of the contour can be obtained by 

 
𝑥 =

𝑚10

𝑚00

𝑦 =
𝑚01

𝑚00

                                                       Eq. 4-10 

where the moment 𝑚𝑝𝑞  is defined in Eq. 2-13. 

The ventricle identification can be categorized into four cases, each defined by a different 

number of candidate contours. After the candidate contour selection, there are only three 

or less than three candidate contours left. If no candidate contour is found, it means that 

no ventricle is recognized in this CT slice. The algorithm will automatically go back to 

the WSA algorithm and execute on the second candidate slice. If only one candidate 

contour is found, either one ventricle is missing from the window or the two ventricles 

are being displayed as one messed up. In this case, it is hard to estimate the actual 

position of the two ventricles and the midline of the brain. Thus, the VIA algorithm 

automatically skips the slice with only one candidate contour and moves back to WSA 

for the next candidate slice. If two candidate contours are found, VIA identifies the right 

and left lateral ventricles by comparing the mass center positions of the two contours 

along the x direction. However, if three contours are found, the contours’ mass center 

information is used to confirm the right and left lateral ventricles. Details of VIA in this 

case will be discussed in Section 4.3. Figure 4.3 illustrates how the VIA algorithm is used 

to identify the right and left lateral ventricles. 
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After ventricle identification, the actual midline can be estimated as follows. Assume that 

the right and left lateral ventricles have mass center positions (𝑥𝐿 ,𝑦𝐿)  and (𝑥𝑅 ,𝑦𝑅) , 

respectively. The brain actual midline is then estimated to be at middle of the two 

ventricles and have the slope K given by Eq. 4-11.  

  𝐾 = −𝑡𝑎𝑛
(𝑥2− 𝑥1)

( 𝑦2− 𝑦1)
                                               Eq. 4-11 

  

4.3 Results and Discussion 

4.3.1 Data 

This database contains original 3133 axial CT scan slices acquired across 70 patients with 

cases of both mild and severe Traumatic Brain Injuries (TBI). All the 280 CT scans from 

SSA subset have been utilized to detect the actual midline and estimate the brain midline 

shift.  

 

4.3.2 Results and discussion 

4.3.2.1 Results of Window Selection Algorithm implementation 

Window Selection Algorithm (WSA) is aimed at selecting the most appropriate slices and 

confining the window of focus. Figure 4.4 shows the results of implementing WSA on 

one patient’s CT images. The four CT slices in Figure 4.4-a are the ones selected by the 

SSA algorithm. With the WSA algorithm, these slices are sorted by their Fw value. The 

higher Window Fidelity Measure is, the clearer and more accentuated the ventricles are in 

the window. As shown in Figure 4.4-b, the CT slice with top Fw is selected as the first 
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candidate slice with its suitable window. As it can be noticed, it successfully provides a 

reasonable initial contour for the segmentation step. 

 

    
Fw=28.5%                  Fw=22.0% 

                            Fw=28.5% 

Fw=16.2%                  Fw=13.3% 

(a)                                                          (b)  

Figure 4.4 The results for Window Selection Algorithm implemented on the four slices selected 

from one patient’s CT scan by the SSA algorithm. (a) Slices sorted by Fw, (b) the first candidate 

slice with WSA window. 

 

By confining the region of interest to only the WSA window, the time cost associated 

with level set segmentation is greatly reduced. Additionally, the contour evolution 

becomes more efficient due to avoidance of the side effects produced from regions 

outside the window. As a result, the first candidate slice with its WSA window attains a 

very high probability of success in the remaining steps. In our study, for 52 out of 65 

cases, in which the ventricle boundaries are correctly extracted with segmentation, we 

obtain the actual midline using the WSA slice with top Fw. 
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4.3.2.2 Results of Weighted Median Filter implementation 

After extensive experimentation, we find that performing a weighted median filter 

operation on the CT scan prior to the level set evolution can be useful. The weighted 

median filter smoothes out noise from CT image, avoiding noisy contours in the 

segmentation results.  

 

 
0

th
 iteration             30

th
 iteration          120

th
 iteration         360

th
 iteration 

(a) 

 
0

th
 iteration            30

th
 iteration          120

th
 iteration         180

th
 iteration 

(b) 

Figure 4.5 Contour evolution on a CT image with and without weighted median filter 

implementation prior to the level set segmentation. (a) Contour stability occurs after 360 

iterations without weighted median filtering, (b) contour stability occurs after 180 iterations 

when weighted median filtering is applied. 
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However, the most important benefit of weighted median filter in the framework is the 

major reduction in segmentation time. As shown in Figure 4.5, weighted median filtering 

decreases from 360 to 180 the number of iterations required for contour stability. Fewer 

itterations result in a speed-up in the implementation of the algorithm. More, very few 

noise contour remians in the window when weighted median filter applied prior to the 

contour evolution (Figure 4.5, bottom row). Without weighted median filter, several 

noise contours appear (Figure 4.5, top row) which will seriously affect the following 

ventricle identification. Based on our database of 70 patients, an average of 160 iterations 

are required to complete contour evolution with filtering, while an average of 280 

iterations were required without filtering. 

 

4.3.2.3 Results of Level Set Segmentation implementation 

The initial level set function φ assigns the value 2 for all the pixels within the WSA 

window. The value of φ here is chosen arbitrarily and can be any value between 0-255 

(pixel intensity values). The parameters of the level set function are set as follows, λ1 = 1, 

λ2 = 1, σ = 3.0, time step ∆t = 0.1, μ = 1 and v = 0.001 × 255 × 255. 

Figure 4.6 depicts the results of the level set method at different iterations, from the 

initial stage to the final stable contour within the WSA window. In Figure 4.6,  the sub-

images from top left to right shows results after 0, 30, and 50 iterations of the level set 

evolution, respectively; while the bottom sub-images from left to right shows results after 

100, 150, and 200 iterations of the level set evolution, respectively. Satisfying the 

terminal condition, wherein all the boundaries of the ventricles have been sucessfully 

identified, the evolution becomes stable after 200 iterations. Figure 4.7 shows the 3-D 
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final level set function. Its contour on the zero-plane is actually the final 2-D contour 

shown in the bottom-right sub-image in Figure 4.6.  It can be seen that the level set 

segmentation successfully extracts the ventricle boundaries which feed the ventricle 

identification and brain midline estimation steps.  

 

 

0
th
 iteration                           30

th
 iteration                   50

th
 iteration 

 

100
th
 iteration                   150

th
 iteration                     200

th
 iteration 

Figure 4.6 Contour evolution using the level set algorithm at different levels of 

iteration (0, 30, 50, 100, 150, and 200 iterations for the sub-images from the top left 

to bottom right)  
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The segmentation algorithm was implemented in Matlab on a PC with Intel core i7 3.40 

GHz processor and 8GB of RAM. The average CPU time for the level set evolution on a 

single candidate CT slice was 129.2 seconds. We compared our level set results with 

those by the Gaussian Mixture Model (GMM) method [95] using the same database. We 

found that the level set segmentation took 20% less time compared to the GMM method. 

 

 

Figure 4.7 The 3-D level set function with the zero plane when contour stability 

 

4.3.2.4 Ventricle identification and actual midline detection 

Following level set segmentation, in most cases, there are two possible contours extracted 

from the WSA window. Based on Ventricle Identification Algorithm (VIA), the two 

candidate contours indicate the right and left lateral ventricles. For the case with more 

than three contours, the largest three contours are selected as the candidate contours at the 

beginning of VIA process. Figure 7 presents the ventricle identification and midline 

estimation process for the case with three candidate contours. Figure 7-a shows that three 
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candidate contours are extracted by VIA. According to the positions of the mass centers 

and the size of the three candidate contours, VIA selects two of them to represent the left 

and right lateral ventricles. For instance, with three contours if two of them have similar 

mass center positions and similar lengths, while the third contour is different from these 

two in both size and position, then the two similar contours are selected as the ventricle 

contours.  The top small contour in Figure 4.8-a should be removed from the list of 

candidate contours if compared to the bottom two contours (Figure 4.8-b). The mass 

centers of the selected ventricle contours are then calculated by Eq. 4-10 (Figure 4.8-c). 

According to the positions of the ventricle mass centers, the actual midline is estimated as 

shown in Figure 4.8-d. 

 

   
(a) 
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(b)                 (c) 

 
(d) 

Figure 4.8 Ventricle identification and brain midline estimation. (a) Three candidate 

contours, (b) identification of two ventricle contours, (c) centers of mass of the 

ventricle contours, (d) midline estimation. 

 

The collaborating physician manually labeled the actual midline for every patient in the 

database. With a strict definition of accuracy, which is an allowed error of three pixels in 

the horizontal direction and 2 degrees of the rotation angle, the accuracy of the midline 

estimation of our system is 92.5%, higher than 87.5% reported using GMM method in 

[95]. In the GMM method, the accuracy was measured using only the horizontal direction 
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shift of three pixels, whereas in this proposed method, the inclusion of rotation angle into 

the definition of accuracy makes the accuracy criterion stricter.  

 

4.3.2.5 Brain midline shift estimation 

 

 

Figure 4.9 Midline shift estimation. The red line represents the ideal midline and the yellow 

line represents the actual midline. The horizontal distance of their mass centers is the brain 

midline shift.  

 

The ideal midline can be detected using the process introduced in Chapter 3, and the 

actual midline is detected using the process introduced in this Chapter. Then the brain 
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midline shift s can be calculated by the horizontal difference of the above two lines as 

follows. 

𝑠 =  𝑥𝑖𝑑𝑒𝑎𝑙 − 𝑥𝑎𝑐𝑡𝑢𝑎𝑙                                                 Eq. 4-12 

where xideal is the x coordinate of the mass center of the detected ideal midline and xactual 

is the x coordinate of the mass center of the detected actual midline. Figure 4.9 shows the 

midline shift estimation on one CT slice. 

 

4 .4 Summary  

In this chapter, an actual midline detection system based on a variational level set 

segmentation method is described and the midline shift estimation is presented. During 

the pre-processing step, a window selection algorithm (WSA) selects the appropriate CT 

slice containing clear ventricle information and confines subsequent operations within a 

specific window. WSA greatly enhances the efficiency of the whole system by reducing 

segmentation time. The use of the variational level set segmentation model combined 

with the ventricle identification algorithm successfully extracted ventricle contours. 

Actual midline was detected using the centers of mass of ventricle contours. The actual 

midline estimation technique achieved an accuracy of 92.5% after validation by a 

physician. Hence, this framework shows to be a viable tool to aid clinicians in assessing 

severity of TBI using brain midline shift detection.  
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Chapter 5 Application: Intracranial Pressure Prediction 

5.1 Background and introduction 

The elevation of intracranial pressure (ICP) is one of the most serious problems 

associated with traumatic brain injury (TBI) which is a major medical and socioeconomic 

problem. ICP may cause brain swelling accompanied by elevated ICP can result in 

inadequate cerebral perfusion with well-oxygenated blood and potentially deadly 

consequences such as ischemia, herniation, and reflex bradycardia [129, 130]. ICP 

monitoring is a standard procedure in the care of severe TBI patient [6, 131]. The ability 

of non-intrusively conduct a pre-screening of ICP can be very helpful in avoiding 

invasive procedures which could lead to infection and further damage to the brain tissue.  

In this work, a non-intrusive ICP prediction model has been proposed to assist physicians 

during the assessment of the severity of TBI. The prediction model built in our previous 

work [132] has been modified in this study and was updated using multiple valuable new 

features as input to the classification model. The validation result of the developed model 

shows that the proposed method could potentially be used as a reference during the 

decision support process before intensive brain surgery. 

 

5.2 Methodology 

5.2.1 Candidate features 

The symptoms observed due to increased ICP levels are usually shifted brain structures, 

hydrocephalus, herniation, and intracranial hematoma [133]. These symptoms can be 

http://en.wikipedia.org/wiki/Reflex_bradycardia
http://en.wikipedia.org/wiki/Hydrocephalus
http://en.wikipedia.org/wiki/Intracranial_hematoma
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directly translated into a series of features extracted using advanced image processing 

techniques, such as midline shift, abnormal intracranial air, cerebrospinal fluid (CSF) size, 

and changes in the brain matter texture patterns. The extracted features are then used as 

an input in developing prediction models towards estimating the level of ICP in a given 

patient. Furthermore, the proposed prediction system also utilizes demographic 

information such as patient age, and other clinical measures such as Injury Severity Score 

(ISS). The details of extracting these feature sets have been discussed below. 

 

5.2.1.1 Brain midline shift 

MLS is an important index for clinicians to assess the severity of TBI. MLS is known to 

be highly correlated with the ICP levels [9]. The midline shift can be estimated according 

to the method introduced in Chapter 4.  

 

5.2.1.2 Ventricle Size 

The ventricles in the brain of a young adult are well-developed and filled with 

cerebrospinal fluid (CSF). They are open but not excessively large. In CT images, 

ventricles display near black in the center of brain. Figure 5.1 shows a brain CT slice with 

normal sized ventricles. During cases of cerebral atrophy, the size of the ventricles 

increases thus making it a valuable feature for ICP prediction. 
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Figure 5.1 A brain CT slice with normal ventricles 

 

Ventricle size feature can be measured in multiple ways. One is using the area of the 

extracted contours of left and right lateral ventricles by the method introduced in Chapter 

4. Another is to use template matching algorithms during ventricle identification in CT 

slices [9]. It can also be evaluated by computing the ratio between the number of 

ventricle pixels and the total number of intracranial pixels.  

 

5.2.1.3 Intracranial air cavities 

In cases of a head injury, air cavities may form inside the intracranial region (Figure 5.2). 

Air can leak into the cranial chamber through the mastoid and/or associated temporal 

bone fracture [85]. Since air cavities are unusual inside the skull, detecting them can 

valuable information in predicting the ICP levels. The sizes of the air cavities may vary 
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from small air bubbles to larger air pockets. More detail introduction of the intracranial 

air can be found in Section 2.2.5.  

 

 

Figure 5.2 Brain CT image with air in intracranial region 

 

Intracranial air appears black on all CT images. For instance, the black region close to the 

calvaria in Figure 5.2 is the intracranial air. To measure this feature, we extract all 

intracranial pixels with the intensity in the range of 0-5 (out of 255) using a threshold 

based techniques. Furthermore, the intracranial region can be obtained by the following 

steps, (1) extract skull bone from the CT image using threshold based method, (2) obtain 

the region inside by skull bone (3) calculate the mass center of skull bone (4) identify the 

intracranial region that contains the position of the mass center of the skull bone.  

http://dict.cn/calvaria
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5.2.1.4 Blood Amount Estimation 

 

 

Figure 5.3 A sample slice with hemorrhage 

 

Another useful feature is the estimation of the collected blood volume due to hematoma 

or hemorrhage. Figure 5.3 shows a patient suffers from the large amount extra blood 

(hemorrhage) in intracranial region. Excessive accumulation of blood can also be a cause 

in the displacement of brain tissues and increase in ICP levels. The measurement of blood 

amount can be implemented by the Gaussian Mixture Model (GMM) segmentation [134].  
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5.2.1.5 Texture Feature 

Identifying the texture of the brain matter also can be used towards ICP prediction. In the 

case of elevated ICP, the texture of gray matter and white matter may change due to 

compression, which may result in the change of their appearance. 

 

 

Figure 5.4 Texture feature extraction using six rectangular windows on one slice. 

 

As shown in Figure 5.4, to measure the texture feature, six rectangular sub-images 

(windows) are selected on each CT slice to contain the brain tissue in the intracranial 

region, while avoiding the region of blood and ventricles. Two sets of texture feature are 

used in this work [135, 136]. The first set is generated using histogram with 10 bins. 

Texture features are expressed by the variance of those histograms. A new feature, 
2
, is 

produced in this process, where  is the standard deviation of the window region. 
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Another new feature, called the measure of smoothness r, can be calculated using the 

following equation; 

21

1
1


r                                                Eq. 5-1 

The value of r is in a range of 0 to 1. The lesser the value of r, the smoother is the texture 

of that region.  

The second set of texture features is computed using Grey Level Run Length Method 

(GLRLM) [137], which extracts higher order statistics of the texture using a matrix  R() 

= [r(i, j|)]. The element r(i, j|) shows the number of consecutive runs of length j at 

gray level i in the direction  (0, 45, 90 and 135 degrees are used in this work). By using 

different weighting scheme, eleven features can be extracted from the matrix to represent 

the regularity and periodicity of the image. 

 

5.2.1.6 Demographics and other patient information  

Demographics such as patient age and gender, and other injury scores such as Injury 

Severity Score (ISS) provide extra information in prediction of ICP level. Patient’s age is 

considered as main demographic information. Injury Severity Score (ISS) as a main 

measure of injury severity, which is also selected as a feature.  
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5.2.1.7 Feature Aggregation across CT slices 

In order to consider the interplay among consecutive slices of each patient, all of the 

above mentioned features are aggregated for all the slices available of each patient which 

produces a series of new aggregation features for that patient. 

To aggregate the extracted features, a statistical approach is used in the calculation. 

Specifically, min(f), max(f), median(f), mean(f), and std(f) are calculated and used as new 

aggregation features in ICP prediction. In the case of blood amount feature, in addition to 

the above aggregation features, sum(f) is also calculated. This aggregation process also 

integrates the features among different selected windows on the same CT slice. The final 

statistical features are expected to represent the state of a set of CT slices. Table 5.1 

shows the number of candidate features in the CT scan of one patient. 

 

Table 5.1 Candidate features of one patient’s CT scan 

Feature type number of feature 

Midline shift, ventricle size, intracranial air,  and blood amount 30 

Demographic information 2 

Texture patterns 220 

Total Number 252 
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5.3 Results and discussion 

5.3.1 Data 

The dataset used in this study contains 57 CT scans from 17 patients with mild to severe 

TBI. Some patients have more than one set of CT scan obtained during their hospital stay. 

With each set of CT scans, 5 CT slices with clear visibility of ventricles are used in this 

work because the features of these regions are used in the analysis. Thus, in effect 285 

CT slices are used towards the final analysis. 

For reference and validation purposes, the ICP value which was invasively measured for 

each patient is used towards the development and validation of the prediction models. 

The mean value in the two ICP measurements before and after the collection of CT scan 

is used as the reference ICP value for each case. In this work, there are 33 cases under 

normal ICP value (ICP≤ 12) and 24 cases with elevated ICP (ICP> 12). 

 

5.3.2 Results and Validation 

Since hundreds of features are computed by the proposed algorithm, it is vital to identify 

the subset of features that truly contribute towards ICP prediction. A wrapper model 

incorporating a classifier and a features selection method is employed in this proposed 

method in order to increase the accuracy of the model and to reduce inter-case variability.  

A two step process is used to select the subset of features from the large candidate set 

[138]. In the first step, a filter-like feature selection method is used to rank all features. 

Then features with higher rank are selected as the refined candidate sets. In the second 
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step, a wrapper feature selection method with a classifier is utilized to select the final 

feature set which improves the classification accuracy.  

Information Gain Ratio criterion is utilized to select the top ranked 50 features in the first 

stage. The Information Gain Ratio is as follows,  

)A(H/))A|C(H)C(H()A,C(GainR iii                   Eq. 5-2 

where H(C) is the entropy of class label, H(Ai) is the entropy of attribute Ai, and H(C|Ai) 

is the conditional entropy. Genetic search is used to further optimize the feature selection 

subset in the second stage. The population size is set to 5 and the maximal number of 

generation is set to 10. The evaluation criterion for each feature subset is 10-fold cross 

validation with support vector machine (SVM). In order to perform parameter search of 

SVM, another 10-fold cross validation is nested into the genetic search. 

 

 

Figure 5.5 Top level cross validation in RapidMiner 
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The classification process is designed and run in RapidMiner [139] which provides a very 

intuitive graphic interface to design complex nested model and evaluation processes for 

classification purposes. Figure 3 shows the outmost layer cross-validation structure in 

RapidMiner.  

 

Table 5.2  Result of Calssification 

 Sensitivity Specificity Accuracy 

mean value 68.6 76.6 73.7 

standard deviation 7.3 3.9 4.2 

 

After feature selection, 10 fold cross validation is implemented three times with random 

split of the data. Table 5.2 shows the result of classification. The total classification 

accuracy is around 74% in predicting ICP levels. The result shows promise towards 

developing a viable ICP prediction tool. 

 

5.3.3 Discussion 

Selected features in each fold may be different because of the random/different training 

data. Thus a vote operation based on the frequency of occurrence is applied the 10 fold 

cross validation on all selected features gathered from 10 feature set. Around 30 features 

are extracted from each fold. The features with low frequency of occurrence are removed 

before classification. It is noticed that around 12 features in each fold are unique due to a 

limited dataset. The selected feature set mainly belongs to texture features because of the 
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high proportion of texture feature 87% (220/252). The features, such as ventricle size and 

intracranial air, are also selected. 

 

5.4 Summary 

In this work, an ICP level prediction model is proposed and validated using machine 

learning method. Multiple features, such as midline shift, intracranial air cavities, 

ventricle size, texture patterns, and blood amount are extracted automatically from the 

brain CT images using advanced image processing methods. In addition demographic 

information such as age and ISS are also used as candidate features. To avoid over fitting, 

the model is validated based on nested 10 fold cross validation. The obtained results 

show that the proposed model can potentially be applied towards developing a prediction 

system for physician in medical decision making.  
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Chapter 6: Summary 

This research provides a framework of the automated midline shift estimation system on 

brain CT images for computer-aided decision support. Two novel algorithms, namely CT 

Slice Selection Algorithm (SSA) and Window Selection Algorithm (WSA), have been 

designed to select appropriate CT slice and confine region of interest for midline 

detection. Exhaustive searching associated with global rotation method are utilized in 

ideal midline detection. Variational level set method implements image segmentation to 

extract ventricle contours for actual midline detection. If implemented as a clinical 

diagnostic tool, the fully automated process could significantly reduce the diagnosis time. 

In the slice selection step, the SSA algorithm closely simulates the process of manual CT 

slice selection by physicians in clinical practice. Fully considering the anatomical 

characteristics of the brain and the need for midline shift estimation, SSA selects the CT 

images with closed skull, large intracranial area, good convexity, and clear ventricle 

information. To quantitatively measure the above features, a series of new measures are 

proposed in this work, including skull closing level F, total intracranial convex measure 

ΛTotal , and ventricle fidelity measure Fv. Each slice in one brain CT scan is examined step 

by step using the above measures.  Finally, the most appropriate few slices (around 10% 

slices are selected in this work) are selected for the following midline detection. The 

great reduction in the number of slices ensure a computation time saving for the system. 

The designed ideal midline detection process fully considers the symmetry of the skull 

and anatomical features in the identification of IML on the slices selected by the SSA 

algorithm. Based on row symmetry cost, an exhaustive symmetric position search method 

is used to detect the approximate position of IML. Subsequently, using the brain 
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anatomical features, such as the position of the falx cerebri and protrusion of skull bone, 

the position of IML is refined. The application of global rotation on both steps ensures 

the connection among CT slices being fully considered and thereby the error generated 

by using a single CT slice being compensated. Finally, the calibrated IML and the aligned 

image provide a foundation for the following actual midline detection and midline shift 

estimation. Comparing with the work of other research group, our system yields a high 

accuracy after the test on a large database. 

In the actual midline detection step, variational level set segmentation method associated 

with window selection algorithm, weighted median filter, and ventricle validation process 

is designed to detect the position of the actual midline. For the purpose of saving 

computation time in segmentation, window selection algorithm (WSA) is proposed to 

select the most appropriate slice and confine the window only to the ventricle area. The 

new measure, window selection measure Fw, is used to quantitatively evaluate the quality 

of selected window containing ventricle information. WSA greatly enhances the 

efficiency of the whole system by reducing segmentation time. In addition, the window 

selected by WSA is used as the initialization for the segmentation. Variational level set 

method is very popular in the medical image processing. As the first attempt to apply this 

method in MLS estimation, the utilization of variational level set segmentation 

successfully extracts ventricle contours and provides the crucial index for the actual 

midline detection. Using the positions of ideal midline and actual midline, the midline 

shift is accurately estimated. With a strict definition of accuracy, our system achieves a 

desirable high accuracy of 92.5% in the actual midline estimation. 
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As an important application of midline shift estimation in clinical setting, an ICP level 

prediction model is designed and validated using machine learning method. In order to 

implement the classification in ICP prediction, multiple features, such as midline shift, 

intracranial air cavities, ventricle size, texture patterns, and blood amount are extracted 

automatically from the brain CT images using advanced image processing methods. The 

aggregated features of the above features are also utilized in the classification model. In 

addition demographic information such as age and ISS are also used as candidate features. 

The results obtained by support vector machine show that the proposed model can 

potentially be applied towards developing a prediction system for physician in medical 

decision making.  
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